

Nutrient Efficiency

Food & Ag Deep Dive Series Wednesday, November 4th, 2020

Tom Bunn | Venture Associate tbunn@iselectfund.com

CONFIDENTIALITY NOTICE: This document contains proprietary company information which may not be disclosed to any third party without the express written permission of iSelect Fund Management, LLC

Contents

- **01 Introduction:** Executive Summary & Speakers
- **05 Nutrients Efficiency:** Background & Trends
- **10 Technology Innovators:** Opportunities & Challenges
- **16 Discussion:** Considerations Going Forward

Executive Summary

- Like humans, plants need nutrients to thrive and reproduce
 - Primary: Carbon, Hydrogen, Oxygen, Nitrogen, Phosphorus, Potassium
 - Secondary nutrients needed in smaller quantities: Calcium, Magnesium, Sulphur
 - Micronutrients: Chlorine, Iron, Zinc, Manganese, Copper, Zinc, Boron, Molybdenum, Copper
- For most of human history, farmers struggled to cycle nutrients for their crops
- In the early 20th century, advances in technology made the requisite nutrients cheap and abundant which resulted in the Green Revolution – a period with unprecedented growth in world food production
- While the Green Revolution contributed to human wellbeing, the excess use of some nutrients causes environmental problems, many of which directly affect human health and welfare
- As we continue to move towards a 10-billion-person planet by 2050, properly addressing nutrient efficiency with novel technologies including biological solutions, nutrient fixing and nutrient solubilizing, and precision agriculture (right nutrient, at the right rate, at the right place, at the right time) can alleviate environmental damage and increase food production and farmer profitability

A Thank You to Our Guests

Yuval Aviel CEO Autonomous Pivot **Bill Brady** CEO Kula Bio **John Kruse** SVP Agronomy Plant Response

Dave Stanko Head of AgTech Engagement at Nutrien Dave Stark President Holganix

Nutrient Efficiency

Definitions & Trends

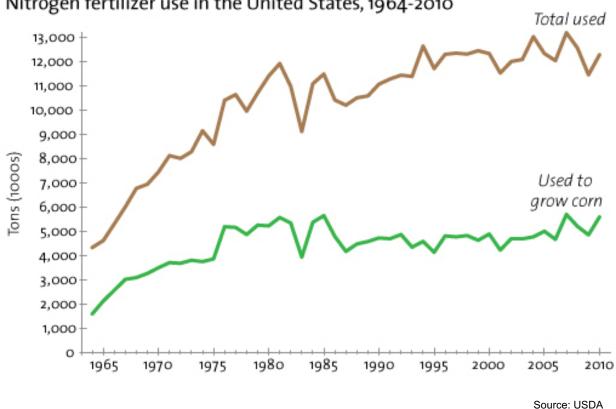
Background on Nutrients

- Nutrients are substances used by an organism to survive, reproduce, and grow
- Farmers deliver key plant nutrients to their crops with synthetic fertilizers, organic amendments, and by building soil health to maintain nutrients in the soil for plants to use
- The three main additive nutrients are nitrogen (N), phosphorus (P) and potassium (K). Together they make up the trio known as NPK
- While some excess nutrients stay in the soil, some will instead be emitted as gases, leach into groundwater, or run off into surface waters
- Farmers and researchers are seeking to boost nutrient use efficiency—the amount of crop yield you get out of the amount of fertilizer you put in—while minimizing nutrient loss

TABLE I: Form, source, mode of uptake and major functions of the 16 plant essential nutrients

Nutrient family	Nutrient	Percentage of plant	Form taken up by plants (ion)	Mode of uptake	Major functions in plants
Primary	Carbon	45	Carbon dioxide (CO ₂), bicarbonate (HCO ₃ ·)	Open somates	Plant structures
	Oxygen	45	Water (H ₂ O)	Mass flow	Respiration, energy production, plant structures
	Hydrogen	6.0	Water (H ₂ O)	Mass flow	pH regulation, water retention, synthesis of carbohydrates
	Nitrogen	1.75	Nitrate (NO ₃ ⁻), ammonium (NH ₄ ⁺)	Mass flow	Protein/amino acids, chlorophyll, cell formation
	Phosphorus	0.25	Dihydrogen phosphate (H ₂ PO ₄ ⁻ , HPO ₄ ²⁻), phosphate (PO ₄ ³⁻)	Root interception	Cell formation, protein syntheses, fat and carbohydrate metabolism
	Potassium	1.5	Potassium ion (K+)	Mass flow	Water regulation, enzyme activity
Secondary	Calcium	0.50	Calcium ion (Ca ²⁺)	Mass flow	Root permeability, enzyme acitivity
	Magnesium	0.20	Magnesium ion (Mg ²⁺)	Mass flow	Chlorophyll, fat formation and metabolism
	Sulfur	0.03	Sulfate (SO ₄ ²)	Mass flow	Protein, amino acid, vitamin and oil formation
Micro	Chlorine	0.01	Chloride (Cl ⁻)	Root interception	Chlorophyll formation, enzyme activity, cellular development
	Iron	0.01	Iron ion (Fe ²⁺ , Fe ³⁺)	Root interception	Enzyme development and activity
	Zinc	0.002	Zinc ion (Zn ²⁺)	Root interception	Enzyme activity
	Manganese	0.005	Manganese ion (Mn ²⁺)	Root interception	Enzyme activity and pigmentation
	Boron	0.0001	Boric acid (H ₃ BO ₃), borate (BO ₃ ³⁻), tetraborate (B ₄ O ₇)	Root interception	Enzyme activity
	Copper	0.0001	Copper ion (Cu ²⁺)	Mass flow	Enzyme activity
	Molybdenum	0.00001	Molybdenum ions (HMoO ⁴⁻ , MoO ₄ ²⁻)	Mass flow	Enzyme activity and nitrogen fixation in legumes

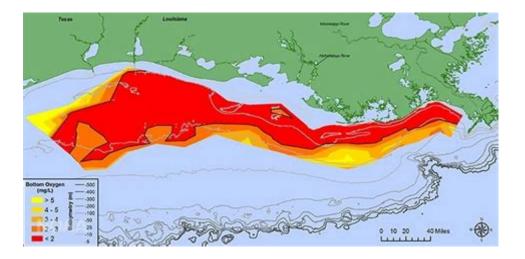
Texas A&M

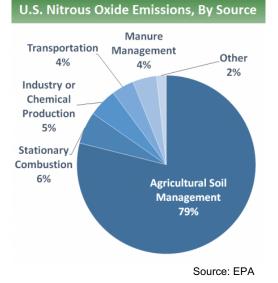


Nitrogen (N)

- Nitrogen is a major component of chlorophyll, the compound by which plants conduct photosynthesis. It is also a major component of amino acids, the building blocks of proteins
- Plant-available nitrogen, known as nitrate, is scarce, and for most of agriculture's 10,000-yearold history, the main challenge was figuring out how to cycle usable nitrogen back into the soil
- It makes up 78% of the air we breathe
- Atmospheric nitrogen (N^2) is joined in tight bond that makes it unusable by plants
- In 1909, two German chemists, Fritz Haber and Carl Bosch, developed a high-temperature, energyintensive process to synthesize plant-available nitrate from air
- \$54.6B market in 2019

This presentation does not constitute an offer to buy or sell securities. Prospective investors should not rely in whole or in part on this presentation. An offering can only be made pursuant to the delivery of a private placement memorandum or definitive securities purchase agreement and receipt and execution of investment related documentation. ©2019 iSelect Fund, LLC. Confidential. All rights reserved. FOR INTERNAL USE ONLY. PRIOR RESULTS ARE NOT INDICATIVE OF FUTURE PERFORMANCE




Nitrogen fertilizer use in the United States, 1964-2010

Problems Associated with nitrogen fertilizer

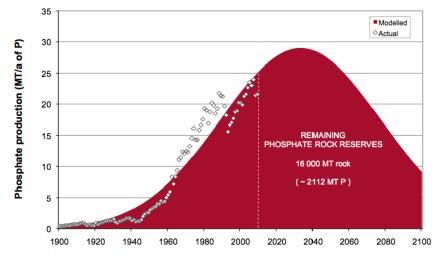
- Problems associated with excess nitrogen fertilizer:
 - Eutrophication and dead zones
 - When soils are exposed to excess nitrogen, microbial reactions take place that release nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide
 - Haber-Bosch Process responsible for ~1% of CO2 emissions
- In total, chemical N fertilizer is responsible for an estimated 5% of global GHG

Source: Washington Post

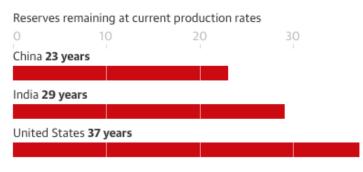
Ammonia by the numbers

Metric tons of NH₃ produced worldwide in 2010

451 million: Metric tons of CO₂ emitted by NH₃ synthesis worldwide in 2010.


Percentage of global CO₂ emissions that come from NH₃ synthesis.

Sources: Institute for Industrial Productivity.

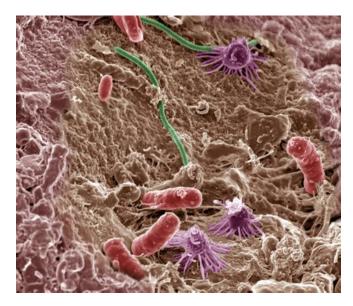

Phosphorous (P)

- P is involved in respiration, energy transfer, and photosynthesis. It is critical to DNA and the P in ATP the molecule the carries energy around cells
- Without an adequate supply of P, maturity is delayed, and plant growth and yield are reduced
- 2nd largest nutrient applied as fertilizer, \$58B market
- Phosphorous is a finite, diminishing, and irreplaceable resource that is concentrated in only a few countries
- Combined economic losses in the USA associated with high phosphorus levels in freshwaters is estimated at \$2.2 billion annually

Peak Phosphorous curve indicating a peak in production by 2033, derived from US Geological Survey and industry data. Source: Cordell et al. 2009

The three most populous nations on earth have between 23 to 37 years of reserves left

Guardian graphic | Source: Blackwell et al, Frontiers of Agricultural Science & Engineering



Technology Innovators

Opportunities & Challenges

Three Highlighted Areas

Microbials and Biologicals

Nutrient Fixing & Solubilizing

Precision Ag

Microbials and Biologicals

Solution Providers

Innovator Highlight

State of the Industry

- 100s companies vying for acres
- Biologicals are the fastest growing segment of ag inputs
- Farmer skepticism / Inconsistency issues
- Last decade has begun to change perception

The Opportunity

- Opportunity to limit synthetic fertilizer usage while increasing yield
- Ag biologicals projected to grow from \$7.4B in 2018 to \$20.5B by 2026, 13.6% CAGR

Challenges Remaining

- We understand only a fraction of what microbes do to aid plant growth
- Developing consistent results takes time and data
- Live microbial products require more complex distribution

Nutrient Fixation and Solubility

Startup Solutions

Innovator Highlight

Overview

Kula Bio uses unique bioreactor technologies to substantially improve the fitness and longevity of nitrogen fixing microbes

State of the Industry

 Most companies focus on symbiotic nitrogen fixation or nutrient use efficiency whereby the crop supplies the needed carbon

The Opportunity

- 4.2 tons CO2 emitted per ton of N fertilizer produced
- 50% of N is lost as toxic runoff or greenhouse gases

Challenges Remaining

- Many are live microbes and distribution remains difficult
- Incumbent fertilizer companies

Precision Agriculture for Nutrient Management

Startup Solutions

Innovator Highlight

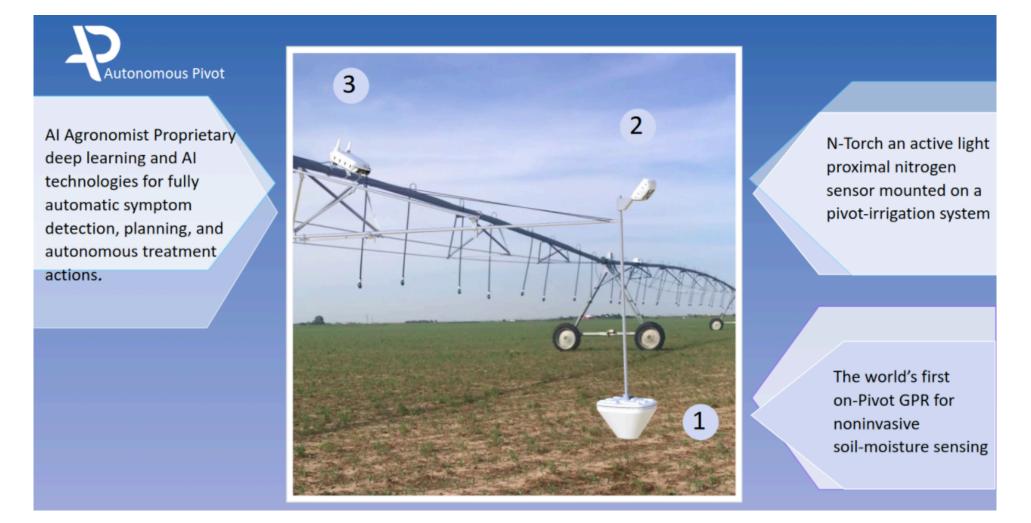
Overview

Proximal nitrogen sensor and ground penetrating radar to measure volumetric water content, both mounted on center pivot irrigation systems

State of the Industry

- In 2018, investors pooled \$945M across 177 deals in farm management software, sensing, and IoT
- Valued at \$4.7B in 2019

The Opportunity


- Right input, right rate, right place, right time translates to higher farmer profitability
- Massive input efficiency gains

Challenges Remaining

- High switching costs and learning curve associated with technology
- ROI needs to be front of mind

Autonomous Pivot

Discussion

Thoughts Going Forward

Thoughts & Discussion

Key Risks & Considerations Going Forward

- <u>Consistency</u>: Novel technologies must prove to be as consistent in delivering nutrients & yield as synthetics
- <u>ROI</u>: Related to consistency, these technologies need to stand on their own two feet in terms of price and performance for farmers. Positive environmental externalities will follow-suit

Other Areas of Opportunity

- <u>Soil mapping</u>: Understanding the nutrient balance and microbial community in different parts of a farmer's field
- <u>Regenerative Ag</u>: Cover crops, no-till, composting, animal grazing and other regenerative ag practices all reduce the need for synthetic inputs. Consumer awareness and demand for products produced under such conditions is increasing the use of such practices

Discussion Questions

- <u>International</u>: Many technologies are untested on foreign soil. E.g. Biofertilizer has been shown to work better in dry climates than wet ones. Combined with the distribution risk, what needs to be true for widespread international adoption of these technologies?
- <u>2030:</u> How prevalent will the technologies discussed be by 2030? How much of their markets can they win?

